If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19=9
We move all terms to the left:
2x^2-19-(9)=0
We add all the numbers together, and all the variables
2x^2-28=0
a = 2; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·2·(-28)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*2}=\frac{0-4\sqrt{14}}{4} =-\frac{4\sqrt{14}}{4} =-\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*2}=\frac{0+4\sqrt{14}}{4} =\frac{4\sqrt{14}}{4} =\sqrt{14} $
| 17=x-19 | | 3y+17=5y-12 | | 4/3-2z=1 | | -8-z=-13 | | 5(2+2x)-2=48 | | −8(−8x+8)=64x−64 | | 2c^2-19=9 | | 5x-2x-3=3x+10 | | -1=m-(-9) | | 5-(2x+3)=8+2x | | –v=–8+v | | 1/2x-63=123 | | 0.111+6=1.111x | | x-2+4x=-38 | | -9-c=-14 | | ⅘z-⅕z+1=⅗z+1 | | X+41+x+78=95° | | 5x+2-2=-15 | | (5x-10)=(3x+14) | | 5x+32+9x=90 | | -15=-5x-30 | | 2(a-3)=250 | | 8x-3=3(2x+3) | | 15=z/2 | | -4-e=-2 | | -3(3x+4)=12 | | 2-4p+8=1/7/23 | | -3x-8=-3+2x | | 20=n/4.n= | | -(3x+14)-5x=-70 | | -10=2/3x+6 | | 6(3x+4)-x=3(4x-2) |